Notice:
The design contained in these drawings is based on the Tricon Precast, Ltd. specifications and the information provided by the Owner. TEC Engineering, LLC. is only responsible for the internal and external stability of the MSE wall system. Global stability is the responsibility of the Owner.

The design contained in these drawings is based on the Tricon Precast, Ltd. specifications and the information provided by the Owner. TEC Engineering, LLC. is only responsible for the internal and external stability of the MSE wall system. Global stability is the responsibility of the Owner.
GENERAL NOTES:
- The MSE wall design is based on AASHTO LRFD Bridge Design Specifications. It is the responsibility of the Owner to provide such materials.
- The design drawings contained herein are based on the contract specifications and methods as indicated in the contract special provisions for mechanically stabilized earth wall systems.
- The contract specifications and methods in accordance with the contract special provisions of the design documentation in these drawings, including but not limited to:
- If any of the details or specifications contained in these design documents vary from the project specifications, the most stringent shall apply.

WALL CONSTRUCTION:
- MSE wall construction shall be in accordance with AASHTO LRFD Bridge Design Specifications (11.0.2.3.2.2) for retaining walls.
- In addition, the following shall apply:
- If existing or future drainage structures, drainage pipes, foundations of bridge piers, or other elements within the reinforced soil mass interfere with the internal elements of the MSE retaining wall, specific options have not been provided in the plans. The contractor shall select the appropriate alternative and notify T.E.G., Inc. of their selection.

SOIL REINFORCING MAT DESIGNATION LEGEND:
- Length of soil mat in feet:
- Spacing of soil mat in inches:
- Transverse wire in inches:
- Soil mat type:
- External stability:
- Internal stability:
- Global stability:
- Internal and external stability of the MSE Wall System. Global stability is the responsibility of the Owner.

PROJECT DESIGN SUMMARY:
- Design Notes:
- Design of MSE Wall per Contract Specifications or Requirements.
- Project Design Summary:
- Date: Mar 25, 2016
- Description of Project:
- Sheet:
- Structure No.:
- Project Number:
- Contract Number:
- Sheet:
- Revision:

PROJECT NOTES:
- For location and alignment of MSE walls refer to contract documents.
- Wherever a physical layout of the MSE walls is required to be located in the contract plans, plan view symbols and notes are based on contract drawings.
- All dimensions are along front face of MSE wall.

MSE CONSTRUCTION NOTES:
1. DEAULS: MINIMUM GAP IS REQUIRED TO PROVIDE A MINIMUM WIDTH OF THE MSE WALL FACE.
2. TRIWEB GEOSYNTHETIC STRIPS SHALL BE HORIZONTAL AND VERTICAL LAYERS OF MSE WALLS.
3. NO LEVELING PAD IS REQUIRED UNDER THE MSE WIRE FACE WALL.
NOTES:
1. COMPACT BACKFILL TO PROVIDE NOT LESS THAN 95 PERCENT OF DENSITY DETERMINED IN ACCORDANCE WITH STANDARD
   PROCEDURE (ASTM D698/ AASHTO T99) OR STATE-SPECIFIC DOT REQUIREMENT, WHICHEVER IS MORE STRINGENT.
2. BACKFILL MATERIAL SHALL MEET OR EXCEED PROPERTIES AS SPECIFIED IN CONTRACT DOCUMENTS.
   THE TEMPORARY WIRE WALL WAS DESIGNED BASED ON THE FOLLOWING ASSUMPTIONS:
   - SELECT BACKFILL PROPERTIES OF 120 pcf UNIT WEIGHT AND 34° PHI ANGLE.
   - 240 psf LIVE LOAD SURCHARGE
   - 3 YEAR MAX DESIGN LIFE
   - 12" MAXIMUM SOIL/PAVEMENT SURCHARGE
3. FACE PIECES ARE SUPPLIED IN 8'-0" WIDTHS AND ARE INTENDED TO SPAN 8'-0".
4. IF THIS STANDARD IS IN VARIANCE WITH PROJECT SPECIFICATIONS, INFORMATION CONTAINED
   IN PROJECT SPECIFICATIONS SHALL GOVERN.
5. STANDARD FACE PIECES ARE 24" HIGH. FACE PIECE HEIGHT MAY VARY BASED ON CONTRACT REQUIREMENTS.

REVIEWING ENGINEER:
ENGINEER:
OF THE OWNER.
INTERNAL AND EXTERNAL STABILITY OF THE MSE WALL SYSTEM. GLOBAL STABILITY IS THE RESPONSIBILITY
AND THE INFORMATION PROVIDED BY THE OWNER. TEG ENGINEERING, LLC. IS ONLY RESPONSIBLE FOR THE
THE DESIGN CONTAINED IN THESE DRAWINGS IS BASED ON THE TRICON PRECAST, LTD. SPECIFICATIONS

NOTICE:
These drawings have been sealed on the 9th day of March, 2016.

STATE OF FLORIDA

STATE OF FLORIDA

FLORIDA DEPARTMENT OF TRANSPORTATION

STD. TEMPORARY WIRE WALL DETAILS

CONTRACT NUMBER:

DATE:
CONSTRUCTION SEQUENCE

**STEPS A-G**

A. Layout proper wall alignment and place bottom face piece.
B. Place soil mats.
C. Place locking rod to secure face piece and soil mat together, remove all slack.
D. Place backfill 2' away from face piece to hold assembly in position. Contact soil to 95% standard proctor or state-specific soil requirements, otherwise toss soil for stability.
E. Place supplied soil mats, fill and secure filter fabric behind face piece. Filter fabric is to be completely covered by the front face piece and overlap top 5" or bottom.
F. Place remaining fill and secure filter fabric. Contact using wire equipment. Backfill to maintain face piece from leaning out.

**STEPS H-N**

H. Continue placing fill in 8' lifts using predetermined freeboard. Contact soil to 95% standard proctor or state-specific soil requirements, otherwise toss soil for stability.
I. Attach four 16" struts per face piece. Contact soil to 95% standard proctor or state-specific soil requirements, otherwise toss soil for stability.
J. Attach next face piece. Place longitudinal extensions from below face piece behind the transverse bar at the above face piece bend. This is required.
K. Attach soil mats, locking rods, and wire struts.
L. Fill void through face piece and soil mat, if necessary.
M. Repeat procedures identified in steps H through M until finish grade is achieved.

**W4.5 WIRE STRUT DETAIL**

**NOTE:**
1. Struts are a structural wall component.
2. Four 16" struts are required at each face piece.
3. 16" strut shall engage transverse bars as shown.

**TEMP WALL LAYOUT PLAN VIEW**

**FILTER FABRIC (TYP.)**

- 24" STD.
- 16" STRUTS PER FACE PIECE

**SELECT FILL**

CRUSHED GRANULAR MATERIALS
TRANSVERSE BAR TO BE WITHIN 2" MIN. OF BEND
LONGITUDINAL EXTENSIONS FROM BELOW FACE PIECE MUST BE PLACED BEHIND THE TRANSVERSE BAR AT THE ABOVE FACE PIECE BEND. THIS IS REQUIRED.

STANDARD 8'-0" WIDE - (25) @ 4" O.C.

TRANSVERSE WIRE (W4.5 @ 6" O.C.)
LONGITUDINAL WIRE (W4.5 @ 4" O.C.)

TRANSVERSE BAR 6'-0" MIN. SELF-OVERLAP AT LAST STRIP, (2) STEEL S-CLAMPS REQUIRED

ANCHORAGE J-HOOK 1#2" DIA.

SIDE VIEW
PLAN VIEW

TRI-WEB STRIP CONNECTION DETAIL

CONNECTION DETAIL

TRI-WEB TEMP WALL DETAILS

03/18/16
A. Lay out the proper wall alignment and place bottom face piece.
B. Place the Tri-Web strips by wrapping the Tri-Web strip around the panel anchor at front of face piece.
C. Remove all slack from strip and secure with strip anchor bar.
D. Place wire struts, 16' O.C., 1' away from edge of face piece as required per face piece.
E. Place struts, 6' O.C., 1' away from face piece to weld assembly in position.
F. Place filter fabric (TYP.) over entire face piece.
G. Place remaining 8” lift of select backfill material. Compact using hand equipment. Take care to prevent face piece from leaning out.

W4.5 Wire Strut Detail

Notes:
1. Struts are a structural wall component.
2. Place wire struts across as required at each face piece.
3. Use W4.5 wire as needed to secure struts.

CONSTRUCTION SEQUENCE

1. Continue placing fill in 8” lifts until next strip row is reached.
2. Place longitudinal extensions from below face piece behind the transverse bar at the above face piece bend. This is required.
3. Bring front of face piece below to final position.
4. Attach next face piece. Place longitudinal extensions from below face piece behind the transverse bar at the above face piece bend. This is required.
5. Attach Tri-Web strips, and wire struts (steps C-F).
6. Fill void through face piece and soil mat, if necessary.

TEMP WALL LAYOUT

Plan View

- Overlap strips at angles
- Spread strips for corner radius
- Overlap strips for corner radius
- Tri-Web portion, if applicable
- Front face of temp wall

NOTE:
1. Struts are a structural wall component.
2. Four (4) W4.5 struts are required at each face piece.
3. 16" strut shall engage transverse bars as shown.
SAND BACKFILL, STEEL REINFORCEMENT

DESIGN CASE 10
- F.P.: 5.995 KSF
- B: 19' 0"
- H: 26'

DESIGN CASE 16
- F.P.: 3.697 KSF
- B: 13' 0"
- H: 16'

DESIGN CASE 20
- F.P.: 4.713 KSF
- B: 15' 0"
- H: 20'

DESIGN CASE 26
- F.P.: 2.427 KSF
- B: 9' 0"
- H: 10'

DESIGN CASE 30
- F.P.: 7.057 KSF
- B: 21' 0"
- H: 30'

TOP/WALL EL. 189.00
THEORETICAL TOP/WALL OF WALL 1.5:1
THEORETICAL BOTTOM

TYPICAL TEMPORARY RETAINING WIRE WALL
FRONT FACE ELEVATION

CASE 30
DESIGN
CASE 26
DESIGN
CASE 20
DESIGN
CASE 16
DESIGN
CASE 10
TYPICAL SECTION THRU TEMPORARY WIRE WALL

VERTICAL OBSTRUCTION - TRIWEB STRIPS

TRI-WEB STRIP CONNECTION DETAIL

NOTE:
- Longitudinal wires may not be cut.
- Transverse wire may be cut to allow wires to be deviated around obstructions.
- Transverse wire must be left appended to longitudinal wires.

NOTE:
- If conditions are significantly different than these details, site engineer for specific design requirements.

B = TOTAL LENGTH OF FACE PIECE AND TRIWEB STRIP (FACTOR VARIES FOR DESIGN CASE)

H = HEIGHT FROM BOTTOM OF WALL TO TOP OF BACKFILL

\[ H \geq 3" \text{ MIN. (TYP.)} \]

\[ H \geq 15° \text{ MAX. (TYP.)} \]

NOTE:
- Obstructions as req'd or under horizontal may be bent over soil reinforcing steel or triweb obstruction.
- Horizontal obstruction may be bent over steel or triweb obstruction.
- Use J-hooks as necessary to secure bottom face piece to allow tightening of triweb strips.
- Bend longitudinal wire around obstruction.
- Cut transverse wire (DO NOT CUT LONG. WIRE)

ARRIVAL OF THE OWNER.

NOTE:
- Design requirements.
- Notify engineer for specific conditions are significantly different than these details, site engineer for specific design requirements.

SELECT BACKFILL FINISHED GRADE (FACTOR VARIES PER DESIGN CASE)